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An initial value method, based on the use of certain compound matrices, is presented 
for the treatment of eigenvalue problems for stiff ordinary differential equations. The 
method appears to overcome not only the parasitic growth problems associated with 
standard shooting methods but also the difficulties, due to the presence of singularities, 
of the Riccati method. Two examples are given to illustrate, both analytically and numeric- 
ally, the essential features of the method. 

1. INTRODUCTION 

Eigenvalue problems for ordinary differential equations are usually treated by first 
defining a solution matrix which satisfies certain prescribed initial conditions and the 
required eigenvalues are then obtained as the roots of some minor of the solution 
matrix. If we attempt to evaluate this minor by computing its elements separately, 
as in a standard shooting method, then there may be a serious loss of accuracy 
numerically especially when the differential equation is stiff. This difficulty can be 
avoided, however, by considering the differential equation satisfied by a certain 
compound matrix whose elements are the minors of the solution matrix, and in this 
way we can compute the required minor directly. 

Compound matrices have been used by Gilbert and Backus [3] in their discussion 
of elastic wave problems and they have also been used recently [5] to derive a uniform 
approximation to the eigenvalue relation for the Orr-Sommerfeld problem. In this 
paper, therefore, we wish to show how they can be used for eigenvalue problems for 
linear ordinary differential equations. In Section 2 we give a general outline of the 
method with emphasis on equations of fourth order and two examples are discussed 
in Section 3 to illustrate the main features of the method. Finally, in Section 4, we 
discuss briefly the relationship between the compound matrix method and the one 
suggested recently by Golberg [4]. 
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2. OUTLINE OF THE METHOD 

To illustrate the basic ideas involved, consider the linear fourth-order equation 

L(4) := qYv - alp - a,+” - a&’ - u4+ = 0, (1) 

where a, , a2 , a3 , and a4 are functions of x and 0 < x < 1. To be definite, we shall 
also suppose that the boundary conditions at x = 0 are 4 = 4’ = 0. The boundary 
conditions at x = 1, however, need not be specified until later. 

For the present purposes it is convenient to rewrite (I) as a system of first-order 
equations. Thus, if we let $J = [& 4’, +“, +“‘I’ then (1) becomes 

where 
9’ = AW9, (2) 

0 1 0 0 
0 0 I 0 

A(4 = o o o l . I 1 4 a3 6 al 

(3) 

Now let +r and (pz be two solutions of (1) which satisfy the initial conditions 

Cl(O) = P, 0, 1, OIT and 4*(O) = [O, 0, 0, llT, 

and consider the 4 x 2 solution matrix 

(4) 

(5) 

The 2 x 2 minors of the matrix 4, are 

??l = A+; - Kd2 > ?'A = +;+; - c;+;, 

Jz = 414s - #Jo42 > y6 = +;g - r$;+; ) (6) 

J-3 = l$l+; - c#l;"l$p , J6 = (b"+; - +;fg ) 

and they satisfy the quadratic identity [I] 

YlYS - YZY:, + Y3Y4 = 0. (7) 

By using the general theory given in [3] or by a direct calculation it is easy to show 
that y = [yl ,..., Y,J* satisfies the equation 

Y’ = WX)Y, (8) 
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where 

I 0 0 0 1 0 1 0 1 0 0 0 0 1 
B(x) z I “0” “0” “0 0 1 01 

I -04 0 --a, 0 0 0 -a3 u., u1 0 1 

(9) 

Thus y is the second compound of 4r and it satisfies the initial condition 

Y(O) = P, 0, 0, 0, 0, 1lT. (10) 

The boundary conditions on 4 at x = 1 will imply that some element of y or, 
more generally, a linear combination of the elements of y must vanish there and this 
condition will provide the required eigenvalue relation. In actual calculations, of 
course, some iterative procedure must be used to vary the eigenvalue parameter 
until this condition is satisfied to some prescribed degree of accuracy. 

Once the required eigenvalue has been obtained by the method just described, 
we can then proceed to the determination of the corresponding eigenfunction 4 (say). 
Clearly there must exist constants X and p such that 

4 = @1+ I-42 9 4’ = q; i- pq% , 
(11) 

I$” = h&j + p& , 4” = A$; + p+;. 

The constants h and p can be eliminated from these equations in four different ways 
and if this is done then we obtain 

YlC” - Y24’ + Y44 = 0, (12) 

Ylf -- Y3$’ + Y54 = 0, (13) 
y2p - y3q + Y,$ = 0, (14) 

and 

y4p - y5f + y& = 0. (15) 

Thus we have four possible equations for the determination of the eigenfunction $. 
Consider first the behavior of the solutions of Eqs. (12)-(15) near x = 0. For this 

purpose we observe that as x - 0 we have 

Yl 4 -i!G ) y2 N -$x3, y3 - 4x2, ” 

y4 - ~$X2, 
(16) 

Y5 - x, Y6- 13 

and this limiting behavior is seen to be independent of the coefficients in (1). The 
point x = 0 is therefore a regular singular point of Eqs. (12)-(15) and at that point 
they have exponents (2, 3), (-2, 2, 3), (-4, 2, 3), and (0,2, 3) respectively. It is easy 

581/30/I-9 
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to show, however, as a consequence of (8), that none of the solutions contains 
logarithmic terms. Accordingly, near x = 0 the solution of Eqs. (12)-(15) that 
satisfies the boundary conditions must be of the form 

#,(x) = f bsx”+‘, 
.S=O 

(17) 

where b, and bl are arbitrary. When Eq. (1) is even moderately stiff, however, forward 
integration of Eqs. (12)-(15) from x = 0 to 1 leads, as might have been expected, 
to a serious growth problem. 

To avoid this growth problem, consider the possibility of determining 4 by inte- 
grating one of Eqs. (12)-(15) backwards from x = 1 to 0. For illustrative purposes 
we shall suppose that $‘( 1) = $“‘( 1) = 0 as these are the relevant boundary conditions 
for the Orr-Sommerfeld problem which will be discussed in Section 3.2. In all cases 
it is convenient to fix the normalization of the solution so that +(I) = 1 and, for the 
present discussion, we shall assume that vi(x) does not vanish anywhere in the interval 
0 < x < 1. For Eq. (12) the initial conditions are +(l) = 1 and d’(l) = 0, and (12) 
then shows that $“‘(l) vanishes automatically. On integrating Eq. (12) from x = 1 to 0, 
we see that 4 must necessarily satisfy the boundary conditions at x = 0 since the 
exponents of (12) at x = 0 are 2 and 3. Thus we have a simple marching problem for 
the determination of 4. This procedure, however, will fail to yield the final values at 
.X = 0 since (12) is singular there, but this is only a very minor limitation. 

For Eqs. (13)-(15) the initial conditions are &I) = 1, $‘( 1) = 0, and $“( 1) = 
--y,(l)/y,(l). On integrating these equations from x = 1 to 0, however, some 
numerical difficulties would be expected due to the exponents -2, -&, and 0 of the 
equations, respectively, at x = 0. These difficulties, which are particularly severe in 
the case of (13), have been confirmed by actual calculations on the Orr-Sommerfeld 
problem. 

It remains to be shown, however, that the solution of Eq. (12) obtained in this way 
is also a solution of Eq. (1). For this purpose let 

and 

zq = y&Y - Y# + Yo+‘* (21) 

A short calculation then shows that 

4 ~ zz 9 (22) 

26 = a221 + al% + z3 + YA44 (23) 

4 = -a321 + v3 + zq + y,L(@, (24) 
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and 

Suppose now that (12) holds, i.e., that z1 1~ 0. Then z2 
(25) reduce to 

0 = 23 + Yl-u4)> 

z; = a123 L zq + J’&(j), 

and 

z; = a1z4 -1 J’4L(+). 

129 

(25) 

0 from (22) and Eqs. (23)- 

(26) 

(27) 

(28) 

With 4 determined from (12) as described above, it can then be shown from (20) and 
(21) that ~~(1) = ~~(1) = 0. Elimination of L(r$) from Eqs. (26)-(28) then gives a 
pair of first-order equations for z3 and z4 , and the only solution of these equations 
which satisfies the initial conditions is the trivial one. Thus L(4) = 0 and the solution 
of (12) is indeed the required eigenfunction. 

An alternative to the method just described would be to define the solution matrix 
(5) with respect to the boundary condition at x = I. In this approach, with $‘(I) = 
v(1) = 0, C& and +Z would be required to satisfy the initial conditions 

41(l) = [I, 0, 0, 01’ and 4,(l) = [O, 0, 1, OF. (29) 

The eigenvalue of the problem is then obtained by integrating (8) backwards, subject 
to the initial condition 

and by requiring that ~~(0) = 0. We also note that as x + 1 we have 

y1 - x - I, J’z - I, ?‘3 - a,(l)(s - l), 
(31) 

JJ4 - +,(l)(x - I)“, J’, - -U,(l)(x - I)", J'~ w -U,(~)(S - I), 

and hence x = 1 is a regular singular point of (12) and (15) but it is an ordinary point 
of (13) and (14). To obtain the eigenfunction we must now integrate forward from 
x = 0 to 1 to avoid the growth problem and, for this purpose, Eq. (14) would appear 
to be the best choice since x = 0 and 1 are both ordinary points of this equation. The 
initial conditions are b(O) = 4’(O) = 0 and #“(O) = 1 (say). An argument similar 
to the one given above then shows that the solution obtained in this way is also a 
solution of (1) and that 4’ and p both vanish automatically at x = I. The eigen- 
function 4 can then be renormalized, if desired, so that +(I) = 1. 
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3. EXAMPLES 

3.1. The Transverse Vibrations of a Beam 

To illustrate some features of the method just described, consider first the transverse 
vibrations of a beam which are governed by the equation 

$,io - k”#, = 0 (32) 

and suppose that one end of the beam, at x = 0 (say), is clamped, i.e., 4(O) = 
4’(O) = 0. Then the solutions of (32) which satisfy the initial conditions (4) are 

and 
&(x) = $k-2(cosh kx - cos kx) 

$2(x) = +k-3(sinh kx - sin kx). 
(33) 

There is, of course, no difficulty in solving this problem analytically subject to appro- 
priate boundary conditions at x = 1 but there is clearly a growth problem numerically 
due to the fact that, when kx is large, the solutions (33) no longer form a “numerically 
satisfactory” pair in the sense of Miller [6]. 

For this problem a, = a2 = a3 = 0 and a4 = k4, and the elements of y then satisfy 
the equations 

3’ Ll = J2, $7 = y3 + I’4 , y; = 1’5 1 

(34) , 
Y4 = Y5 9 y; = -k4y1 + y6 , y; = -k4y2 . 

These equations admit the two exact relations 

k4y, r y6 = Cl and Y3 - ,"a = G > (35) 

where C, and C, are arbitrary constants. The initial conditions (lo), however, show 
that C, = 1 and C, = 0 and hence that 

k4yI + ys = 1 and y3 - y, = 0. (36) 

The system of equations (34) can therefore be reduced to one of order four. For this 
purpose let 

“1 = --k4y, +y6, y2 = y, > y3 = Y3 3 and y4 = y, . (37) 

Then Y = [Y, , Y, , Y, , Y,]’ satisfies the equation 

Yiv + 4k4Y = 0, (38) 
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and the solution of this equation which satisfies the initial condition Y(0) = [I, 0, 0, O]T 
is 

Y,(x) = cash kx cos kx, 

and 

Y,(x) = k-3(cosh kx sin kx - sinh kx cos kx), 
Y3(x) = k-2 sinh kx sin kx, (39) 

Y,(x) = k-l(cosh kx sin kx + sinh kx cos kx). 

When kx is large, these components of Y have the common growth factor ekm. 
Nevertheless they remain numerically satisfactory because they differ in phase by the 
largest possible factors and this is essential if we wish to be able to distinguish 
different boundary conditions at x = 1. 

If, for example, we now suppose that the beam is also clamped at x = 1, then 
we must require that VI(l) = 0. This condition is equivalent to requiring that Y,( 1) = 1 
and hence we obtain the familiar eigenvalue relation cash k cos k = 1. For the 
lowest mode k = 4.7300407 and the behavior of the elements of y for this mode, 
obtained by numerical integration of (34), is shown in Fig. la. To obtain the eigen- 

1.0 

0.5 

1.0 0 

-0.5 

-1.0 

@ 12.9y, 

@) 3.52~~ 

@ 3.03y3 

@ 3.03y, 

@ 1.69y, 

@ 0.71y, 

FIG. 1. The behavior of the elements of y for the vibrating beam problem with C(O) = #J’(O) = 0. 
For (a) 4(l) = #‘(I) = 0 and for (b) $‘(l) = C”‘(1) = 0. 
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function for this problem, however, a slight modification of the procedure described 
in Section 2 is required since ~~(1) = 0. In this case the integration can be initiated 
at x = 1 by using either (14) or (15) and then switching to (12) to continue the 
integration to x = 0. 

This problem has been widely used 18, 9, 111 to illustrate the use of the Riccati 
transformation method and it is of some interest therefore to consider briefly the 
relationship between that method and the present one. The Riccati method is success- 
ful in overcoming the growth problem but other difficulties arise due to the singularities 
of the Riccati matrix R and its inverse S. If, however, an attempt is made to eliminate 
the singularities from the Riccati method then, as Davey [l] has shown, one is led 
directly to the use of compound matrices as described in this paper. He has also 
shown how the elements of R and S can be expressed in terms of the elements of y 
and from those results it follows that 

det R = YJY, and det S = ya/y, . (40) 

Thus the singularities of R and S occur at the zeros of ys and y, , respectively. As can 
be seen in Fig. la, y1 vanishes only at the end points x = 0 and 1 but ye vanishes at 
x = 0.3964 and x = 0.9924, and the closeness of the singularities of R and S at 
x = 0.9924 and 1, respectively, clearly leads to further difficulties in the switching 
process. To cope with these switching problems, Sloan [8] introduced a free parameter 
h and a modified Riccatti matrix E (with inverse G) such that 

det E = (vl - hy4)/v6 and det G = Y~/(Y~ - xy4). (41) 

Although no prescription was given for choosing h, a trial-and-error approach led 
Sloan to adopt the value X = -10. For this value of h the singularities of G are at 
x = 0 and 0.6649 and they are therefore well separated from the singularities of E. 
Thus, although the Riccati method has some attractive features, it would appear that 
it also has some inherent disadvantages which are absent from the present method. 

For other boundary conditions at x = 1 we need only require the vanishing of the 
appropriate element (or linear combination of elements) of y. For comparison with 
the Orr-Sommerfeld problem, we have also considered the case when 4’(l) = 
#“(l) = 0 and h ence ys must vanish at x = 1. This corresponds to considering the 
symmetric vibrations of a beam of length 2. The eigenvalue relation for this problem 
is tanh k + tan k = 0 and for the lowest mode k = 2.3650204. The behavior of the 
elements of y for this mode is shown in Fig. lb. 

3.2. The Orr-Sommerfeld Problem for Plane Poise&e Flow 

For the Orr-Sommerfeld equation, the coefficients in Eq. (1) are 

a, = 0, a2 = 201~ + inR(U - c), 

a3 = 0, a, = -{LX* + iolR[c?(U - C) + U”];, 
(42) 
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where U(X) is the basic velocity distribution, cy. and R are real parameters, and c is the 
(possibly complex) eigenvalue parameter. For plane Poiseuille flow on the interval 
0 < x < 2 we have U(x) = x(2 - X) and if we consider only the symmetric modes 
then the problem can be studied on the interval 0 < x < 1 with boundary conditions 

4(O) = #J’(O) = 0 and $4’(l) = 4”(l) = 0, (43) 

and the general method discussed in Section 2 is thus directly applicable. 
To test the effectiveness of the present method on this problem we have considered 

the unstable mode for 01 = 1 and R = 10,000 as this is a case for which a comparison 
can be made with various existing results. In these calculations our aim was not to 
achieve great accuracy but rather to show that reasonable accuracy can be obtained 
without difficulty. The calculations were made therefore by using the Runge-Kutta- 
Gill procedure with constant step-size and they were performed in single-precision 
arithmetic on a CDC-6600 computer. Thus in Table I we show the effect of step-size 

TABLE I 

The Effect of Step-Size on the Eigenvalue 
for the OrrSommerfeld Problem with 0: = 1 and R = 10,000 

Number of steps c 

500 0.2375 221 + 0.0037409 i 

600 243 402 i 

700 253 400i 

800 258 398 i 

900 260 398 i 

1000 262 397 i 

1100 263 397 i 

1200 0.2375263 + 0.0037397 i 

Thomas [lo] 
Orszag [7] 

0.2375 259 + 0.0037404 i 

0.2375265 + 0.0037397 i 

on the eigenvalue c and we have also included a comparison with the values obtained 
by Thomas [lo], who used a five-point Numerov finite-difference method with up to 
100 grid points, and Orszag [7], who used an expansion in Chebyshev polynomials 
with up to 50 terms. The behavior of the elements of y for this problem is shown in 
Fig. 2 and, in particular, we see that none of them vanishes in the interval (0, 1). Their 
rapid variation near x = 1 is, of course, a direct consequence of the largeness of R. 
A calculation of the eigenfunction was also made by integrating Eq. (12) backwards 
from 1 to 0 as described in Section 2, and the effect of step-size on this calculation 
is given in Table II. These results, together with a more detailed comparison with 
Thomas’s results, show that we can achieve 5D accuracy, which is adequate for most 
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@ 1.55x10-‘41y,l @ 1.55x10-‘41y,l 

@ 1.77x10-'61y*l @ 1.77xlo-'61y*l 

@ 2.03~10-'81y31 @ 2.03~10-'81y31 

i i 
@ 9.53 xlo4~ly41 @ 9.53 xlo4~ly41 

@ 2.10x10-'6 ysl @ 2.10x10-'6 ysl 

@ 1.25~1O-'~ly~l @ 1.25~1O-'~ly~l 

0.85 0.9 0.95 1.0 
X 

FIG. 2. The behavior of the elements of y for the Orr-Sommerfeld problem. When normalized 
to unity, the graphs of / y, !, I yz !, I y, 1, and I y, 1, though not identical, are indistinguishable on this 
scale. 

TABLE II 

The Effect of Step-Size on the Eigenfunction 
for the Orr-Sommerfeld Problem with CY = 1 and R = 10,000 

Number of steps W.5) 4w.5) 

500 0.7851 74 - 0.0016 67 i -0.9112 46 - 0.0069 11 i 
600 81 67 i 38 12i 
700 84 68 i 34 12i 
800 85 68 i 32 12 i 
900 86 68 i 31 12i 

1000 87 68 i 31 12i 
1100 87 68 i 30 12i 
1200 0.7851 87 - 0.0016 68 i -0.9112 30 - 0.0069 12 i 

Thomas [lo] 0.7851 90 - 0.0016 62 i 
Sloan [8] 0.7851 9 - 0.0016 7 i 

purposes, by using about 800 steps. A more systematic comparison of the present 
method with other existing numerical methods has also recently been made by 
Gersting [2]. 

4. DISCUSSION 

The relationship between the present method and the Riccati method has been 
discussed by Davey [I]. It is of some interest, however, to consider briefly its relation- 
ship to the method suggested by Golberg [4] which is based on a transformation of the 
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linear eigenvalue problem into a certain nonlinear initial-value problem. To illustrate 
the relationship between the two methods, consider the fourth-order system (2) 
subject to the boundary conditions (43). One of the key steps in relating the two 
methods is the recognition of the fact that the dependent variables in Golberg’s 
formulation can be identified with yr , yz , y3 , y4 , yj , ys and this leads to the following 
system of.fiz:e nonlinear first-order equations: 

and 

y51'.; = !'1J)6 -+ l'3y,, (44) 

1?5Yi = a3ylp5 L a2(yly6 + 3"3P'4) + aly3y5 t- 1.52, (45) 

4.51); = Y5’), (46) 

Y5J4 = (--a,Yl f %Y, -t QlY5 -tY,).Y, 9 (47) 

s.5.d = -d.hY6 i- Y,Y,) - a3y,y5 + %y51'6. (48) 

The other key step then involves the use of the quadratic identity (7) not only to 
express the terms involving yry, + y, y4 in Eqs. (44), (45) and (48) in terms of yz y, 
but also, on differentiation, to obtain the equation y;l = y, + y4 . In this way, there- 
fore, it is possible to pass from the fifth-order nonlinear system of equations of 
Golberg to the sixth-order linear system (8). 

In the previous two sections we considered only very simple boundary conditions 
at x = 0 and 1. As Sloan and Wilks [9] have shown, however, the case of general 
separated boundary conditions can be reduced, without loss of generality, to requiring 
that any two components of 4 vanish at x = 0 (say) and 

QW) 0, where Q=[ 411 (112 = q13 421 922 q23 414 1 ' 424 
(49) 

The eigenvalue relation in this more general case then becomes 

(q11q22 - q12q21) Y,(l) + (WI23 - 913q21) YZU) 

+ (q11q24 - 914(12l)Y3(1) + (q12q23 - 913422)Y4(1) 

+ (ql2q24 - q14q22)Y5(1) + (q13q24 - q14423) Y6(l) = O* (50) 

Our interest in the use of compound matrices was stimulated initially by the need 
to overcome certain difficulties which arose in the asymptotic theory of the eigenvalue 
relation for the Orr-Sommerfeld problem [5]. It soon became evident, however, that 
they also provide a simple and effective method for the numerical treatment of eigen- 
value problems for stiff differential equations, especially those of hydrodynamic type 
which are typically of order four or six. There are many aspects of the method which 
clearly require further study both analytically and numerically. In this paper, for 
example, we have defined y as the second compound of the solution matrix Q which 
satisfies certain prescribed initial conditions. More generally, however, if +1 and & 



136 NG AND REID 

are any two solutions of (1) then y still satisfies (8). This latter point of view is 
particularly relevant to the asymptotic theory of the Orr-Sommerfeld problem. 
While this paper was under review, we also found that compound matrices can be 
used for linear two-point boundary-value problems. This requires some extension 
of the ideas presented in this paper and is currently under active study. 
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